<< Return to Industry Reflections

Bacillus, Distinguishing Species and Strains Part I

Bacillus Species Identification Methods: Definitions, Pros, and Cons

Understanding the effectiveness of Bacillus products is easy to understand because in many cases we can visibly see the difference. But, it is hard to see what exactly makes up the product. Like most companies, you have probably asked suppliers “what species and how many strains of Bacillus do you have?” This may have been followed up with a straight answer from the supplier but you found that your lab results didn’t match up. Or, maybe you have asked that question only to be replied to with more questions. Like most suppliers, we have been asked that question many times. Seems like a simple question, right? At first glance this question appears straight-forward, but in actuality it is fairly complex. It is important to understand what contributes to the complexity of this question, why suppliers respond the way they do, and the best practices for getting an accurate answer.

The Big Question: What species and how many strains of Bacillus do you have in a particular product?

The Bacillus genus contains a broad range of species and strains with a wide variety of physiologic capabilities; this is precisely what we love about Bacillus, and what makes many of these strains so attractive for a host of industrial and agricultural applications. However, this broad diversity can often make classifying Bacillus at the species and strain level complex or confusing, leading to variable or inconclusive results, particularly for laboratories that may be unfamiliar in working with species from this genus. To further complicate the issue, classification methods which adequately classify bacteria from other groups such as Gram-negative pathogens like E. coli at the species or strain level often fail to adequately distinguish species and strains of Bacillus, particularly species within the closely related Bacillus subtilis group from which many of our MDG strains arise (Bacillus subtilis, Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus atrophaeus, Bacillus mojavensis, Bacillus vallismortis and Bacillus sonorensis). In part I of Distinguishing Species and Strains we take a closer look at some of the common methods for Bacillus species identification.

How are Bacillus species identified?

There are many choices when it comes to test methods for classification of bacteria, and depending on which method(s) are chosen the results can be confusing or even contradictory! Traditional methods rely on culturing of the strain and performance of a panel of biochemical and substrate utilization tests to determine strain profiles relative to reference species. One commonly used example of this identification method is the API® strip test (BioMérieux, Marcy l’Etoile, France). This method is well-established and cost effective, but ultimately still relies on adequate isolation and growth of the target microbe which can sometimes be a can of worms in itself (we discuss this further in a bit). In addition, as with all identification methods, a robust database of reference species is essential for accuracy.

Another option for species identification is fatty acid methyl ester (FAME) analysis, a technique that examines the fatty acid composition of the bacterial cell membrane by gas chromatography. This method has the advantage of being rapid and is generally fairly discriminative for Bacillus species, but again depends on culture of the target microbe and requires expensive equipment that is not always readily available in all laboratories.

Whole genome DNA-DNA hybridization is an older “gold standard” method for identification of bacterial species, in which the degree of similarity between an unknown organism and a known reference organism is determined by fragmenting and hybridizing DNA from a radiolabeled reference organism with the unlabeled DNA from the test organism (Brenner et al., 1967). Though accurate, this technique is not widely used due to the laborious nature of cross-hybridizations, the requirement for radioisotope use, and the lack of a central reference database.

Molecular methods for bacterial identification have become popular in recent years due to their speed and cost efficiency, and the elimination of the need to culture. These methods typically target specific, evolutionarily conserved genes for species identification and rely on PCR to amplify a specific sequence from the DNA of the target microbe. For these methods to be effective, the gene target needs to contain both conserved (similar) regions allowing primer binding to a broad spectrum of microorganisms and variable (dissimilar) regions for effective differentiation of bacterial species. Following PCR amplification, the target sequence is compared using reference databases for similarity to the target genes of known reference strains. Like traditional identification methods, the identifications provided through gene-centric PCR techniques are only as accurate as the reference databases used.

Sequencing of the 16S ribosomal RNA (16S rRNA) gene is the most frequently used method for identification of bacteria. This gene codes for a component of the 30S small subunit of prokaryotic ribosomes and is conserved in all prokaryotic species, making it an attractive target. Though this method can be quite suitable for classification of bacteria in a wide range of taxonomies, for Bacillus species, the 16S rRNA gene can be highly similar and therefore often fail to adequately discriminate between species. For example, a full 16S gene sequence from a given Bacillus strain can often have equal degrees of similarity to sequences from Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus mojavenesis or Bacillus methylotrophicus. Partial 16S sequences are used by some laboratories and provide even less information with which to make accurate identifications.

More recently, the gyrB gene which encodes the subunit B protein of DNA gyrase, has become a popular gene target for molecular identification of Bacillus species (Wang et al., 2007), offering higher resolution of Bacillus species than the 16S rRNA gene with comparable time and cost. But though gyrB sequencing offers a much improved taxonomic resolving power for Bacillus species, but it is important to remember that no one technique is perfect, particularly with highly related species. For example, gyrB failed to distinguish between B. thuringensis and B. cereus in some instances (Chen and Tsen, 2002).

Summary

The bottom line on species identification is that there is not one standard or “right” method. Each method has benefits and limitations, and it is often necessary to use a combination of methods to ensure greatest level of accuracy. Consistency is also key, ensuring laboratories are using identical methods and databases for identification will go a long way in avoiding confusion of contradictory results.

Now that you understand the complexity behind identifying species, next month we will look at the different methods for Bacillus strain identification and discuss the advantages and pitfalls of each. By the end of the Distinguishing Species and Strain series we hope you have a better understanding on what contributes to answering “the big question”.

Search Insights
Recently Posted Insights

2024 EXPANSION: CONTINUED GROWTH AT MDG

Since the completion of our Oak Creek facility in the fall of 2022, we have steadily grown our capacities and capabilities as a trusted provider of Bacillus-based solutions. We are excited to announce that our growth has given us the opportunity to expand our...

Upcoming Webinar: Creating Quality Microbial Products

Producing high-quality microbial products for industrial, institutional, and consumer applications is essential for our partners. In our upcoming webinar, we will explore the critical aspects of microbial product development and how we ensure quality products for your...

Proven Success Treating Sludge with Biotifx®

If your customers are working in the biological wastewater treatment industry, chances are they’re dealing with the challenges of organic sludge. Sludge, the waste components left over after the wastewater has been treated, is a constant expense for facilities, and...

Sludge Tanks 101: Treating the Waste

Throughout the wastewater treatment process, certain components are left over that get separated from the treated water. This collection of leftovers is called sludge, which is then further treated in tanks. At Microbial Discovery Group (MDG), we have explored the...

Lagoons 101: Identification and Long-Term Treatment Approach

Lagoons and ponds have been used for treating wastewater for over 3,000 years. Today, there are over 8,000 wastewater treatment lagoons operating in the United States. One appeal to using lagoons is that they generally require less energy than other treatment systems...

Proven Success in Wastewater Seasonality

In the world of wastewater treatment, seasonal challenges can disrupt operations and affect the efficiency of treatment plants. As the industry begins to face the difficulties of this year’s spring, MDG emerges as a trusted partner with a track record of proven...

Battling Restroom Odors: Debunking Ice in Urinals

Ever since the invention of the urinal back in 1886, facilities have been battling the unwanted odors that come with them. To combat the odors, businesses have tried many different treatments… some more beneficial than others.   One of the most used techniques for...

Industry Reflections

Bacillus, Distinguishing Species and Strains Part I

Bacillus Species Identification Methods: Definitions, Pros, and Cons Understanding the effectiveness of Bacillus products is easy to understand because in many cases we can visibly see the difference. But, it is hard to see what exactly makes up the product. Like most companies, you have probably asked suppliers “what

Fats, Oils and Grease: Bacillus vs. The Alternatives

What do many commercial, residential, industrial and institutional facilities all have in common? If you said a door, you’re technically correct; but for the purpose of today’s article the correct answer was Fats, Oils and Grease (FOG)! All of your customers facilities have drains, and drains are sought-after hosts

Bioaugmentation

What is bioaugmentation?

At MDG, we continue to discover all the possibilities to treat wastewater with Bacillus. Through years of research and development, we’ve found that bioaugmentation is the answer for wastewater treatment. Bioaugmentation is the process of adding scientifically selected organisms to a microbial community to enhance that community. The term bioaugmentation

Pulp and Paper Lagoons Problems

It’s been a tough few years for the pulp and paper (P&P) industry. With an increase in foreign competition and a lowered demand for paper, many facilities have had to tighten their belt. One of the most probable victims of these cuts are the wastewater treatment systems. Wastewater needs

Supplying Quality: One Strain at a Time

In the large-scale liquid bacterial fermentation world, there are two primary ways to grow bacteria: as individual strains or in combination with others. At Microbial Discovery Group, we grow one strain at a time as it has served us well over the past decade. Truth be told, if I

News and Insights

The Benefits of Liquid Dosing

Many wastewater distributors are faced with finding an efficient product to combat common challenges such as sludge, fats, oils, and grease, and odors. Bacillus-based products have been proven highly effective and reliable to reduce, eliminate, and alleviate these challenges in the wastewater market. Did You Know These Products Come in

Are You Offering a Bacillus RV Septic Treatment?

Outdoor activities like RV camping are an ideal way for travelers to escape indoor isolation. It’s all about packing up the necessities and hitting the open road. Living out of an RV camper for any amount of time will likely include eating, sleeping, and using the bathroom. These are

Top 5 Tips to Prevent Septic System Back-Ups

According to the EPA, about 1 in 5 US homes depend on septic systems, and with the uptick in professionals working from home, septic tank maintenance and backup prevention tips are among some of the top online searches. Septic service companies are in high demand, more people are home

FAQs on Bacillus Strains in the I&I Market

1. How do MDG’s Bacillus strains help reduce a variety of organic materials such as debris, decaying food, human and pet waste and FOG? MDG offers Bacillus-based products with different Bacillus strains that have a wide array of capabilities. Bacillus are living organisms and need food to live and multiply. They break down and consume